Title | Genetic screen for suppression of transcriptional interference reveals fission yeast 14-3-3 protein Rad24 as an antagonist of precocious Pol2 transcription termination. |
Publication Type | Journal Article |
Year of Publication | 2022 |
Authors | Garg A, Shuman S, Schwer B |
Journal | Nucleic Acids Res |
Volume | 50 |
Issue | 2 |
Pagination | 803-819 |
Date Published | 2022 Jan 25 |
ISSN | 1362-4962 |
Keywords | 14-3-3 Proteins, Acid Phosphatase, Amino Acid Sequence, Cell Cycle Proteins, Chromosome Mapping, Gene Expression Profiling, Gene Expression Regulation, Fungal, Intracellular Signaling Peptides and Proteins, Models, Molecular, Mutagenesis, Mutation, Protein Subunits, RNA Interference, RNA Polymerase II, RNA, Long Noncoding, Schizosaccharomyces, Schizosaccharomyces pombe Proteins, Sequence Deletion, Structure-Activity Relationship, Synthetic Lethal Mutations, Transcription Termination, Genetic, Transcription, Genetic, Whole Genome Sequencing |
Abstract | Expression of fission yeast Pho1 acid phosphatase is repressed under phosphate-replete conditions by transcription of an upstream prt lncRNA that interferes with the pho1 mRNA promoter. lncRNA control of pho1 mRNA synthesis is influenced by inositol pyrophosphate (IPP) kinase Asp1, deletion of which results in pho1 hyper-repression. A forward genetic screen for ADS (Asp1 Deletion Suppressor) mutations identified the 14-3-3 protein Rad24 as a governor of phosphate homeostasis. Production of full-length interfering prt lncRNA was squelched in rad24Δ cells, concomitant with increased production of pho1 mRNA and increased Pho1 activity, while shorter precociously terminated non-interfering prt transcripts persisted. Epistasis analysis showed that pho1 de-repression by rad24Δ depends on: (i) 3'-processing and transcription termination factors CPF, Pin1, and Rhn1; and (ii) Threonine-4 of the Pol2 CTD. Combining rad24Δ with the IPP pyrophosphatase-dead asp1-H397A allele caused a severe synthetic growth defect that was ameliorated by loss-of-function mutations in CPF, Pin1, and Rhn1, and by CTD phospho-site mutations T4A and Y1F. Rad24 function in repressing pho1 was effaced by mutation of its phosphate-binding pocket. Our findings instate a new role for a 14-3-3 protein as an antagonist of precocious RNA 3'-processing/termination. |
DOI | 10.1093/nar/gkab1263 |
Alternate Journal | Nucleic Acids Res |
PubMed ID | 34967420 |
PubMed Central ID | PMC8789043 |
Grant List | P30 CA008748 / CA / NCI NIH HHS / United States R01 GM134021 / GM / NIGMS NIH HHS / United States R35 GM126945 / GM / NIGMS NIH HHS / United States |
Submitted by ljc4002 on August 21, 2025 - 2:19pm