For COVID-19 vaccine updates, please review our information guide. For patient eligibility and scheduling availability, please visit VaccineTogetherNY.org.

You are here

Publications

Found 74 results
Author Title [ Type(Desc)] Year
Filters: Author is Schnappinger, Dirk  [Clear All Filters]
Journal Article
Marrero J, Rhee KY, Schnappinger D, Pethe K, Ehrt S.  2010.  Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection.. Proc Natl Acad Sci U S A. 107(21):9819-24.
Santangelo Mde la Paz, Gest PM, Guerin ME, Coinçon M, Pham H, Ryan G, Puckett SE, Spencer JS, Gonzalez-Juarrero M, Daher R et al..  2011.  Glycolytic and non-glycolytic functions of Mycobacterium tuberculosis fructose-1,6-bisphosphate aldolase, an essential enzyme produced by replicating and non-replicating bacilli.. J Biol Chem. 286(46):40219-31.
Puckett S, Trujillo C, Wang Z, Eoh H, Ioerger TR, Krieger I, Sacchettini J, Schnappinger D, Rhee KY, Ehrt S.  2017.  Glyoxylate detoxification is an essential function of malate synthase required for carbon assimilation in Mycobacterium tuberculosis.. Proc Natl Acad Sci U S A. 114(11):E2225-E2232.
Wescott HH, Zuniga ES, Bajpai A, Trujillo C, Ehrt S, Schnappinger D, Roberts DM, Parish T.  2018.  Identification of Enolase as the Target of 2-Aminothiazoles in .. Front Microbiol. 9:2542.
Klotzsche M, Ehrt S, Schnappinger D.  2009.  Improved tetracycline repressors for gene silencing in mycobacteria.. Nucleic Acids Res. 37(6):1778-88.
Gandotra S, Schnappinger D, Monteleone M, Hillen W, Ehrt S.  2007.  In vivo gene silencing identifies the Mycobacterium tuberculosis proteasome as essential for the bacteria to persist in mice.. Nat Med. 13(12):1515-20.
Puckett S, Trujillo C, Eoh H, Marrero J, Spencer J, Jackson M, Schnappinger D, Rhee K, Ehrt S.  2014.  Inactivation of fructose-1,6-bisphosphate aldolase prevents optimal co-catabolism of glycolytic and gluconeogenic carbon substrates in Mycobacterium tuberculosis.. PLoS Pathog. 10(5):e1004144.
Voskuil MI, Schnappinger D, Visconti KC, Harrell MI, Dolganov GM, Sherman DR, Schoolnik GK.  2003.  Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program.. J Exp Med. 198(5):705-13.
Schnappinger D, Ehrt S.  2006.  Introduction: genomic approaches in infectious diseases.. Microbes Infect. 8(6):1611-2.
Ehrt S, Schnappinger D.  2003.  Isolation of plasmids from E. coli by alkaline lysis.. Methods Mol Biol. 235:75-8.
Ehrt S, Schnappinger D.  2003.  Isolation of plasmids from E. coli by boiling lysis.. Methods Mol Biol. 235:79-82.
Johnson EO, LaVerriere E, Office E, Stanley M, Meyer E, Kawate T, Gomez JE, Audette RE, Bandyopadhyay N, Betancourt N et al..  2019.  Large-scale chemical-genetics yields new M. tuberculosis inhibitor classes.. Nature. 571(7763):72-78.
Shi C, Geders TW, Park SWoong, Wilson DJ, Boshoff HI, Abayomi O, Barry CE, Schnappinger D, Finzel BC, Aldrich CC.  2011.  Mechanism-based inactivation by aromatization of the transaminase BioA involved in biotin biosynthesis in Mycobaterium tuberculosis.. J Am Chem Soc. 133(45):18194-201.
Vandal OH, Pierini LM, Schnappinger D, Nathan CF, Ehrt S.  2008.  A membrane protein preserves intrabacterial pH in intraphagosomal Mycobacterium tuberculosis.. Nat Med. 14(8):849-54.
Ehrt S, Schnappinger D, Rhee KY.  2018.  Metabolic principles of persistence and pathogenicity in Mycobacterium tuberculosis.. Nat Rev Microbiol. 16(8):496-507.
Ehrt S, Rhee K, Schnappinger D.  2015.  Mycobacterial genes essential for the pathogen's survival in the host.. Immunol Rev. 264(1):319-26.
Stephanou NC, Gao F, Bongiorno P, Ehrt S, Schnappinger D, Shuman S, Glickman MS.  2007.  Mycobacterial nonhomologous end joining mediates mutagenic repair of chromosomal double-strand DNA breaks.. J Bacteriol. 189(14):5237-46.
Ehrt S, Schnappinger D.  2009.  Mycobacterial survival strategies in the phagosome: defence against host stresses.. Cell Microbiol. 11(8):1170-8.
Gouzy A, Larrouy-Maumus G, Bottai D, Levillain F, Dumas A, Wallach JB, Caire-Brandli I, de Chastellier C, Di Wu T-, Poincloux R et al..  2014.  Mycobacterium tuberculosis exploits asparagine to assimilate nitrogen and resist acid stress during infection.. PLoS Pathog. 10(2):e1003928.
Lin K, O'Brien KM, Trujillo C, Wang R, Wallach JB, Schnappinger D, Ehrt S.  2016.  Mycobacterium tuberculosis Thioredoxin Reductase Is Essential for Thiol Redox Homeostasis but Plays a Minor Role in Antioxidant Defense.. PLoS Pathog. 12(6):e1005675.
Ehrt S, Schnappinger D.  2007.  Mycobacterium tuberculosis virulence: lipids inside and out.. Nat Med. 13(3):284-5.
Williams KJ, Boshoff HI, Krishnan N, Gonzales J, Schnappinger D, Robertson BD.  2011.  The Mycobacterium tuberculosis β-oxidation genes echA5 and fadB3 are dispensable for growth in vitro and in vivo.. Tuberculosis (Edinb). 91(6):549-55.
Shi S, Nathan C, Schnappinger D, Drenkow J, Fuortes M, Block E, Ding A, Gingeras TR, Schoolnik G, Akira S et al..  2003.  MyD88 primes macrophages for full-scale activation by interferon-gamma yet mediates few responses to Mycobacterium tuberculosis.. J Exp Med. 198(7):987-97.
Freire DMendes, Gutierrez C, Garza-Garcia A, Grabowska AD, Sala AJ, Ariyachaokun K, Panikova T, Beckham KSH, Colom A, Pogenberg V et al..  2019.  An NAD Phosphorylase Toxin Triggers Mycobacterium tuberculosis Cell Death.. Mol Cell. 73(6):1282-1291.e8.
Tan MPing, Sequeira P, Lin WWei, Phong WYee, Cliff P, Ng SHwee, Lee BHeng, Camacho L, Schnappinger D, Ehrt S et al..  2010.  Nitrate respiration protects hypoxic Mycobacterium tuberculosis against acid- and reactive nitrogen species stresses.. PLoS One. 5(10):e13356.