You are here

Publications

Found 162 results
Author Title [ Type(Asc)] Year
Filters: First Letter Of Last Name is E  [Clear All Filters]
Journal Article
Darby CM, Ingólfsson HI, Jiang X, Shen C, Sun M, Zhao N, Burns K, Liu G, Ehrt S, J Warren D et al..  2013.  Whole cell screen for inhibitors of pH homeostasis in Mycobacterium tuberculosis.. PLoS One. 8(7):e68942.
Venugopal A, Bryk R, Shi S, Rhee K, Rath P, Schnappinger D, Ehrt S, Nathan C.  2011.  Virulence of Mycobacterium tuberculosis depends on lipoamide dehydrogenase, a member of three multienzyme complexes.. Cell Host Microbe. 9(1):21-31.
Peng Y, Falck-Pedersen E, Elkon KB.  2001.  Variation in adenovirus transgene expression between BALB/c and C57BL/6 mice is associated with differences in interleukin-12 and gamma interferon production and NK cell activation.. J Virol. 75(10):4540-50.
Ehrt S, Hillen W.  1994.  UDP-N-acetylglucosamine 1-carboxyvinyl-transferase from Acinetobacter calcoaceticus.. FEMS Microbiol Lett. 117(2):137-42.
Geissdörfer W, Frosch SC, Haspel G, Ehrt S, Hillen W.  1995.  Two genes encoding proteins with similarities to rubredoxin and rubredoxin reductase are required for conversion of dodecane to lauric acid in Acinetobacter calcoaceticus ADP1.. Microbiology (Reading). 141 ( Pt 6):1425-32.
Ganapathy U, Marrero J, Calhoun S, Eoh H, de Carvalho LPedro Sori, Rhee K, Ehrt S.  2015.  Two enzymes with redundant fructose bisphosphatase activity sustain gluconeogenesis and virulence in Mycobacterium tuberculosis.. Nat Commun. 6:7912.
Ganapathy U, Marrero J, Calhoun S, Eoh H, de Carvalho LPedro Sori, Rhee K, Ehrt S.  2015.  Two enzymes with redundant fructose bisphosphatase activity sustain gluconeogenesis and virulence in Mycobacterium tuberculosis.. Nat Commun. 6:7912.
Elkon KB, Liu CC, Gall JG, Trevejo J, Marino MW, Abrahamsen KA, Song X, Zhou JL, Old LJ, Crystal RG et al..  1997.  Tumor necrosis factor alpha plays a central role in immune-mediated clearance of adenoviral vectors.. Proc Natl Acad Sci U S A. 94(18):9814-9.
Trujillo C, Blumenthal A, Marrero J, Rhee KY, Schnappinger D, Ehrt S.  2014.  Triosephosphate isomerase is dispensable in vitro yet essential for Mycobacterium tuberculosis to establish infection.. mBio. 5(2):e00085.
Korte J, Alber M, Trujillo CM, Syson K, Koliwer-Brandl H, Deenen R, Köhrer K, DeJesus MA, Hartman T, Jacobs WR et al..  2016.  Trehalose-6-Phosphate-Mediated Toxicity Determines Essentiality of OtsB2 in Mycobacterium tuberculosis In Vitro and in Mice.. PLoS Pathog. 12(12):e1006043.
Lee JJin, Lee S-K, Song N, Nathan TO, Swarts BM, Eum S-Y, Ehrt S, Cho S-N, Eoh H.  2019.  Transient drug-tolerance and permanent drug-resistance rely on the trehalose-catalytic shift in Mycobacterium tuberculosis.. Nat Commun. 10(1):2928.
Lee JJin, Lee S-K, Song N, Nathan TO, Swarts BM, Eum S-Y, Ehrt S, Cho S-N, Eoh H.  2019.  Transient drug-tolerance and permanent drug-resistance rely on the trehalose-catalytic shift in Mycobacterium tuberculosis.. Nat Commun. 10(1):2928.
Lee JJin, Lee S-K, Song N, Nathan TO, Swarts BM, Eum S-Y, Ehrt S, Cho S-N, Eoh H.  2019.  Transient drug-tolerance and permanent drug-resistance rely on the trehalose-catalytic shift in Mycobacterium tuberculosis.. Nat Commun. 10(1):2928.
Kim S, Elkon KB, Ma X.  2004.  Transcriptional suppression of interleukin-12 gene expression following phagocytosis of apoptotic cells.. Immunity. 21(5):643-53.
Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, Dolganov G, Efron B, Butcher PD, Nathan C et al..  2003.  Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages: Insights into the Phagosomal Environment.. J Exp Med. 198(5):693-704.
Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, Dolganov G, Efron B, Butcher PD, Nathan C et al..  2003.  Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages: Insights into the Phagosomal Environment.. J Exp Med. 198(5):693-704.
Trevejo JM, Marino MW, Philpott N, Josien R, Richards EC, Elkon KB, Falck-Pedersen E.  2001.  TNF-alpha -dependent maturation of local dendritic cells is critical for activating the adaptive immune response to virus infection.. Proc Natl Acad Sci U S A. 98(21):12162-7.
Gengenbacher M, Zimmerman MD, Sarathy JP, Kaya F, Wang H, Mina M, Carter C, Hossen MAmir, Su H, Trujillo C et al..  2020.  Tissue Distribution of Doxycycline in Animal Models of Tuberculosis.. Antimicrob Agents Chemother. 64(5)
Tiwari D, Park SWoong, Essawy MM, Dawadi S, Mason A, Nandakumar M, Zimmerman M, Mina M, Ho HPin, Engelhart CA et al..  2018.  Targeting protein biotinylation enhances tuberculosis chemotherapy.. Sci Transl Med. 10(438)
Tiwari D, Park SWoong, Essawy MM, Dawadi S, Mason A, Nandakumar M, Zimmerman M, Mina M, Ho HPin, Engelhart CA et al..  2018.  Targeting protein biotinylation enhances tuberculosis chemotherapy.. Sci Transl Med. 10(438)
Tiwari D, Park SWoong, Essawy MM, Dawadi S, Mason A, Nandakumar M, Zimmerman M, Mina M, Ho HPin, Engelhart CA et al..  2018.  Targeting protein biotinylation enhances tuberculosis chemotherapy.. Sci Transl Med. 10(438)
Melchers M, Bontjer I, Tong T, P Y Chung N, Klasse PJohan, Eggink D, Montefiori DC, Gentile M, Cerutti A, Olson WC et al..  2012.  Targeting HIV-1 envelope glycoprotein trimers to B cells by using APRIL improves antibody responses.. J Virol. 86(5):2488-500.
Zhao N, Darby CM, Small J, Bachovchin DA, Jiang X, Burns-Huang KE, Botella H, Ehrt S, Boger DL, Anderson ED et al..  2015.  Target-based screen against a periplasmic serine protease that regulates intrabacterial pH homeostasis in Mycobacterium tuberculosis.. ACS Chem Biol. 10(2):364-71.
Zhao N, Darby CM, Small J, Bachovchin DA, Jiang X, Burns-Huang KE, Botella H, Ehrt S, Boger DL, Anderson ED et al..  2015.  Target-based screen against a periplasmic serine protease that regulates intrabacterial pH homeostasis in Mycobacterium tuberculosis.. ACS Chem Biol. 10(2):364-71.
Small JL, O'Donoghue AJ, Boritsch EC, Tsodikov OV, Knudsen GM, Vandal O, Craik CS, Ehrt S.  2013.  Substrate specificity of MarP, a periplasmic protease required for resistance to acid and oxidative stress in Mycobacterium tuberculosis.. J Biol Chem. 288(18):12489-99.